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1. At the exit surface a second strong diffracted 
wave appears, the wave End. This leads, in com- 
parison with the conventional theory, to smaller 
amplitudes E h (Hiirtwig, 1978b). But, on the other hand, 
the diffracted wave E h has a considerable amplitude 
still in the range of an extremely asymmetric Laue case 
with grazing emergence (Kishino, Noda & Kohra, 
1972; Bedyfiska, 1973, 1974), where the conventional 
theory predicts no En. Therefore, in the conventional 
theory the integrated reflectivity tends to zero for a -  
0B tending to zero, whereas the theory for the extremely 
asymmetric case provides a non-zero value for a - 0 n 
tending to zero. 

2. The definition of the emerging-beam direction 
cosine changes from Yh = sin (0 n - a ) ,  which is also an 
approximation holding as long as l0 n -a l>>lAOI,  to 
that given in (2). But in the case of grazing emergence 
this change leads to an increase of the integrated 
reflectivity compared with the result of the conventional 
theory. So two opposite tendencies act now on the 
integrated reflectivity. 

The consequences of the changes of the form of the 
dispersion surface are not so important now, because in 
the case of grazing emergence the departures from the 
exact Bragg law for the physically interesting region 
(i.e. for the maximum of the reflection curve) are much 
smaller than in the case of grazing incidence (now AO ~_ 
10 -5 rad and not ~ 10 -3 rad), but they too cannot be 
neglected (H/irtwig, 1978b). 

Despite the fact that the calculations were carried 
out for a special case, the obtained results may be 

generalized, because the discussed properties are 
independent of the chosen conditions. 
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Abstract 

Diffuse X-ray intensities have been measured in the 
hk0 reciprocal plane of cubic dicalcium barium 
propionate, Ca2Ba(C2HsCOO)6, with a diffractometer. 
The observed streaks run parallel to [[10], passing 
through reciprocal-lattice points with h + k = 8n. 
Intensity profiles in two directions perpendicular to the 
streaks were measured and fitted theoretically under the 
assumption of one-dimensional Markov-chain-type 
correlations; the agreement between theory and experi- 
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mental data is excellent, particularly for the [110] 
direction, giving correlation lengths of 24.5 (5)/~ along 
[110] and 4 .6(1) / i ,  along [001]. These lengths are 
compared with the crystal structure and suggest a 
model in which there are ordered domains elongated 
along [110] but rather short along [001]. 

Introduction 

Recently, Stadnicka & Glazer (1980), hereafter SG, 
reported an accurate structure determination of di- 
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calcium barium propionate (DBP). The space group is 
Fd3m (O~,), with Z = 8 and a = 18.178 ,/~. It was 
shown that it is physically impossible to form a fully 
ordered structure in this space group; instead, the 
propionate groups are found to lie in two orientations 
about pseudo-two-fold axes along [100] and equivalent 
directions, with limited correlation (static or dynamic) 
along [110] and [001]. The evidence for these cor- 
relations was in the observation of X-ray diffuse 
streaks, elongated along [110] and passing through 
reflections on l = 0 and 4 layers with h + k + l = 8n, 
and on l = 2 with h + k + l = 4n. For such a streak the 
intensity distribution is narrowest along [110], cor- 
responding to the direction of longest short-range-order 
correlation, but wider along [001], corresponding to a 
shorter correlation in this direction. From the intensity 
distribution of the streaks and the fact that the 
temperature factors for Ca and Ba were normal, it was 
felt that these streaks might be connected with short- 
range correlations between the propionate groups. On 
the basis of these observations, SG proposed that in 
DBP there was limited two-dimensional ordering of 
domains lying perpendicular to (001 ). It was suggested 
that these 'platelets' of local order were of opposite 
chirality and give a clue to the mechanism of ferrogyro- 
tropic switching of chiral regions in the related strontium 
compound, DSP. [Glazer, Stadnicka & Singh (1981) 
discuss the relationship between DSP and DBP and the 
importance of the disordered chiral regions in explain- 
ing the switching of the optical activity in DSP.] The 
diffuse scattering in DBP was observed on stationary- 
crystal X-ray photographs and no attempt was made to 
measure the intensity distribution, except in a quali- 
tative way by eye. Nevertheless, SG estimated the 
mean correlation lengths of the short-range order to be 
roughly 9 A along (001) (i.e. about one half a unit 
cell), and 55/~ along (110). 

In the present paper we report a quantitative study of 
the X-ray diffuse scattering from DBP in the hkO 
reciprocal-lattice plane, demonstrating that 

(i) the arrangement of streaks is indeed as described 
by SG, 

(ii) the intensity distributions normal to the streaks 
are typical of short-range order, 

(iii) the mean correlation lengths along (110) and 
(001) are 24.5 + 0.5 and 4.6 + 0.1 A respectively, 
approximately one-half the values reported earlier. 

Experimental details 

The intensity data were collected on a Stoe Stadi-2 
two-circle diffractometer with Mo Ka radiation. The 
beam was monochromated by plane pyrolytic graphite 
and pulse-height discrimination reduced the effect of 
harmonics. The crystal dimensions were approxi- 
mately 1 x 0.8 × 0.8 mm; the diameter of the 

collimator was 0.8 mm, and the detector slit was 1 
mm 2 at 120 mm from the crystal. 

To investigate the general disposition of the diffuse 
scattering, measurements were made in the hk0 plane 
at intervals of ,~a*, ¼b*, with the diffractometer in the 
o9-20 mode; measurements were made for 90 s at each 
point. A fast scan was performed in h, slow in k. After 
every few rows in k, the minimum and maximum values 
of h were changed by appropriate amounts to cover an 
octant of the hk0 layer, of radius 20a*; an octant is all 
that is necessary to provide complete information about 
00l layers because of the presence of four-fold axes 
along (100) and mirror planes perpendicular to (110) 
in Fd3m. The numbers of counts obtained at each point 
were rounded off to the nearest 10 and plotted on a 
large-scale map of the hkO section; a value of 100 
counts was taken as the cut-off value above back- 
ground. Typically, 200 counts were obtained near the 
centres of the stronger streaks. Contouring was carried 
out at intervals of 50 counts (except near Bragg peaks) 
and the map was reflected across the (110) plane for 
convenience. 

In Fig. 1 long streaks can easily be seen parallel to 
[110], and weaker ones (such as that marked C) 
parallel to [110]; the latter are equivalent to con- 
tinuations of the stronger streaks into the adjoining 
quadrants, folded back according to the symmetry. The 
streaks pass through reciprocal-lattice points given by h 
+ k = 8 n .  

In order to provide a more quantitative study of the 
diffuse scattering, the intensity was remeasured across 
the width of the strong streaks, i.e. along [110]. To do 
this it was necessary to choose regions well away from 
the reciprocal-lattice points, so that normal Bragg 
scattering was not included. It was found that measure- 

Fig. 1. Diffuse scattering in the hkO reciprocal-lattice plane of DBP. 
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ments made across two separate portions of the streak 
through 880 gave similar profiles. As a further check 
that all the regions of the streaks between Bragg points 
had similar profiles, we also integrated the intensities in 
Fig. 1 along the 880 streak and then plotted these out 
as a function of distance across the streak (again 
omitting the Bragg-reflecting regions). Once more, a 
similar profile was found. A careful set of measure- 
ments (see Fig. 2) was then made along the section A A  
in Fig. 1. This was chosen so that it did not pass 
through a Bragg position, nor would be contaminated 
by any 4/2 component. The time spent at each point 
was 30 min, and several complete scans were subse- 
quently added together to improve the counting 
statistics and to ensure that any variations in the 
incident intensity were averaged out. A similar set of 
scans (see Fig. 3) was also made along [001] through 
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Fig. 2. Section through the 880 streak parallel to [1101: 
• experimental point; - theoretical fit, a = 0.116 (background 
9 x 103 counts). 
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Fig. 3. Section through the 12,12,0 streak parallel to [001]: 
• experimental point; - theoretical fit, fl = 0.332 (background 
5.5 x 103 counts). 

the point B (Fig. 1) lying on the [i 10] streak through 
12,12,0. As can be seen from the scales at the tops of 
Figs. 2 and 3 the thickness of the [110] streaks is 
considerably greater along [001] than along [110]. 

Lorentz-polarization correction factors were calcu- 
lated, but the maximum correction was found to be 
small, within the statistical fluctuations, and so they 
were ignored. No absorption correction was applied, as 
this too was calculated to be negligible. The profile was 
corrected for the effect of the detector slit width by 
deconvolution with the method of Stokes (1948). 

Interpretation of the profiles 

SG proposed a short-range-order model of the struc- 
ture in which there were long-range correlations 
between the propionate groups along [110], Shorter 
correlations along [001] and almost no correlations 
along [i10], thus giving rise to the observed type of 
streak. 

In order to analyse this scattering we can assume 
that because of the extreme length of the streaks along 
[ 110], in real space one is dealing with two-dimensional 
ordering perpendicular to [110]. If the cross section'of 
such a streak were small and circular (so that the 
diffuse streaks would be 'rod-like'), the problem could 
be treated in terms of parallel, equally spaced, infinite 
planes perpendicular to [ i l0]  but with each plane 
randomly out of register as in a normal stacking-fault 
sequence. However, the anisotropic nature of the cross 
section of the streak and its large area suggests that we 
must consider short-range order within these planes. 

A possible way of proceeding is to treat the problem 
in a manner akin to a stacking-fault model. Wilson 
(1962) has given a formula for the intensity distribution 
across a streak when there is one-dimensional short- 
range order: 

1 - (1 - 2a) 2 
I ( H )  = I o 

1-- 2(1--  2a) c o s H + ( 1 - - 2 a )  2" 

Here a is the probability of a molecular unit being 
correlated with (or having its orientation determined by) 
the previous one in a one-dimensional (Markov) chain. 
H = 2zcA.S, where A is the repeat vector along the 
chain and S is the scattering vector (ISI = 2 sin 0/k). I 0 
represents the intensity derived from the difference in 
molecular transform of the disordered species respon- 
sible for the diffuse scattering. It is not clear, however, 
how to apply this formula to the case where short-range 
order occurs in more than one direction. Flack (1970) 
and Glazer (1970) demonstrated that, when dealing 
with short-range order within a plane, a good approxi- 
mation could be made by multiplying two separate 
Wilson-type formulae, with two independent proba- 
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bilities a and fl referring to the two major short- 
range-order directions" 

I =  I 0 
1 -- (1 -- 2a) 2 

1 - 2 (1 - 2a) cos H + (1 - -  2 a )  2 

1 - -  ( 1  - -  2 f l )  2 

1 -- 2(1 -- 2/5') cos K + (1 - -  2 / ] )  2 

Similar proposals were made by Hosemann & Bagchi 
(1962) for 'paracrystals'. 

We have applied the same model to DBP. Since the 
anisotropic shape of the cross sections of the streaks 
indicated that the correlation lengths along [110] and 
[001] were quite different, the assumption of indepen- 
dent probability functions should be good. We there- 
fore chose a and fl to represent short-range order along 
[1101 and [0011 respectively. 

Each probability function rises to a maximum 
half-way between reciprocal-lattice points for a,fl > O. 5 
and on reciprocal-lattice points for a,fl < 0.5. Since the 
streaks in DBP pass through Bragg peaks, a,fl  < 0.5 
and the period of H and K is + re. 

For the [110] direction, the repeat distance between 
streaks is 4 a ' v / 2  (successive streaks pass through 440, 
880, 12,12,0). The value of a was determined by 
least-squares refinement; excellent agreement was 
obtained for a = 0.116 +0.002, as shown in Fig. 2. 

For the direction along [001 ], the repeat distance can 
be inferred to be 8a* from the pattern of diffuse streaks 
given by SG; this leads to a least-squares value offl = 

a 

Fig. 4. Schematic diagram of propionate groups in a (001) section 
of the DBP structure. Ellipses represent propionates with their 
long axes lying in the (001) plane, and circles those with their 
long axes along [0011. Heavy lines indicate strong links; dashed 
lines indicate weak links. The shading approximately denotes a 
typical short-range domain and corresponds to one of the 
two-dimensional 'platelets' mentioned in the Introduction, i.e. the 
correlation (along [001]) perpendicular to the plane of the 
diagram is very short. 

0.332 + 0.003 (assuming a background at 5500 
counts in Fig. 3). 

The values of a or fl can be interpreted in terms of 
mean domain sizes or correlation lengths in the 
appropriate directions. For example, for the [110] 
direction, the number of correlated molecules (or 
molecular planes) = 1/a = (n )  and thus the number of 
correlation steps (repeat distances) = (n)  - 1 = 
( 1  - a) /a  and the correlation length = [(1 - a)/a] x 
real-space repeat distance. 

For the [110] direction the repeat distance is a /4v/2  
and the correlation length = 24.5 + 0.5 A. For the 
[001] direction the repeat distance is a/8 and the 
correlation length = 4.6 + 0.1 A. We see then that the 
intensity profiles normal to the streaks are consistent 
with the model of short-range order proposed by SG, 
although the correlation lengths are found to be 
approximately half their eye estimates• The agreement 
between the theoretical fits and the experimental 
points, especially for the [110] direction, is particularly 
good, and seems to justify our approach of using 
independent one-dimensional probability distributions.' 

In the structural study of SG, it was shown from an 
analysis of intermolecular contacts between the propion- 

a te  groups that along (001) every other group formed 
a 'weak' link compared with stronger links along (110) 
(Fig. 4). The correlation length of 4.6 A along (001) 
coincides exactly with ¼a, the distance between suc- 
cessive propionates in the same direction (4.55 A), and 
gives support to the 'weak-link' model proposed by SG. 
The value of 24.5 A is close to the value of 25.7 A 
(av/2) for the linkage along (110)  as shown in Fig. 4, 
thus indicating that the average domain length along 
(110)  contains only one or two weak links with a break 
in correlation occurring at the second weak link on 
average. The very short correlation length along (001) 
lends strong support to the two-dimensional 'platelet' 
model of SG since, compared with the much greater 
correlation along (110),  it corresponds to almost 
complete disorder along (001 ). 

We wish to express our thanks to Dr I. G. Wood for 
helpful discussions. SS wishes to thank the Science 
Research Council and the Clarendon Laboratory for 
financial support during the period of this work. 

Note added in proof." It is important to realize that the 
ordered 'platelets' pl:oposed contain ordering also of the 
cations, so that the DBP structure is to be thought of as 
having microdomains of differing chirality for cations 
and organic molecules. Recent optical transform 
experiments by Welberry & Epstein (private communi- 
cation) suggest that the cations are the major con- 
tributors to the diffuse scattering; however, because 
of the strong C a - O  bonds in the structure, and thus 
the effect of the cation positions on the organic 
molecules, the 'weak link' model may still apply. 
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Abstract 

As pointed out by French & Wilson [Acta Cryst. 
(1978), A34, 517-525], central-limit theorems exist for 
the sums of non-independent as well as of independent 
variables [Bernstein (1922). Math. Ann. 85, 237-241; 
(1927). Math. Ann. 97, 1-59]. The finite size and 
stereochemical properties of atoms make the terms 
summed in the calculation of structure factors non- 
independent, but, if a central-limit theorem is appli- 
cable, then French & Wilson's postulate that the 
distribution parameter is ( I )  and not X has a 
theoretical base as well as empirical justification. The 
curve of ( I )  versus (2 sin 0)/2 is correlated with the 
Patterson function, and the question of the existence of 
series expansions of the Gram-Charlier or Edgeworth 
type for sums of non-independent variables is raised. 

Central-limit theorems 

The expression for the structure factor in terms of the 
atomic positions and the indices of reflexion, 

Fhkt= ~ f jexp{2ni(hxj+ kyj+ lzj)}, (1) 
j=l 

is of the form 

S , =  u 1 + u 2 + ... + Un (2) 

considered in statistics in connexion with central-limit 
theorems. The usual theorem (see, for example, 
Cram+r, 1945, pp. 213-220) depends on the 
assumption that the u's are independent variables, and 
Wilson (1949) used it to deduce the probability 
distribution of the structure factors and of the inten- 
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sities of reflexion for crystals having the space groups 
P1 and ~ P i ,  though he realized that the finite size of 
atoms would prevent complete independence of the 
successive terms of (1). The assumption of complete 
independence implies that the mean intensity of 
reflexion is 

n 
X =  Z Ill 12 (3) 

/=L 

(Wilson, 1942). The expressions derived by Wilson 
have been found to apply with useful accuracy to many 
structures, but for large-molecule structures the av- 
erage intensity does not decrease monotonely with 
(2 sin 0)/2, as predicted by (3), but shows more or less 
marked oscillations. French & Wilson (1978), drawing 
attention to generalized central-limit theorems applic- 
able when the u's of (2) are not independent, postu- 
lated that the functional forms of the Wilson (1949) 
distributions would remain valid, but that the distri- 
bution parameter [S in the notation of Wilson (1950)] 
would be ( I ) ,  the actual local value of the mean 
intensity, averaged over values of hkl giving approxi- 
mately the same value of (2 sin 0)/2, instead of the sum 
given in (3). [In reading their paper it must be noted 
that they use the symbol X both for this sum and for 
the mean intensity ( I ) . ]  Rogers (1965, 1980), Ladd 
(1978) and others have tacitly made the same 
assumption, without explicit reference to central-limit 
theory. 

There are two main generalizations of the central- 
limit theorem for non-independent variables. The first 
applies when the u's are 'almost independent' (presque 
inddpendantes; Bernstein, 1922), where 'almost in- 
dependent' is given a precise mathematical definition 
whose physical meaning is not easy to grasp. The 
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